Some Best Possible Inequalities Concerning Cross-Intersecting Families

نویسندگان

  • Peter Frankl
  • Norihide Tokushige
چکیده

Let I be a non-empty family of a-subsets of an n-element set and 1 a non-empty family of b-subsets satisfying A A B# 0 for all A ES/, BEG. Suppose that n>a+b, baa. It is proved that in this case ~~~+~.4Y~<(~)-(" ;L1)+l holds. Various extensions of this result are proved. Two new proofs of the Hilton-Milner theorem on non-trivial intersection families are given as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Inequalities Concerning Cross-Intersecting Families

Combinatorics, Probability and Computing / Volume 7 / Issue 03 / September 1998, pp 247 260 DOI: null, Published online: 08 September 2000 Link to this article: http://journals.cambridge.org/abstract_S0963548398003575 How to cite this article: P. FRANKL and N. TOKUSHIGE (1998). Some Inequalities Concerning Cross-Intersecting Families. Combinatorics, Probability and Computing, 7, pp 247-260 Requ...

متن کامل

On cross-intersecting families

Frankl, P., On cross-intersecting families, Discrete Mathematics 108 (1992) 291-295. Let n 3 t z 1 be integers. Let 9, YI be families of subsets of the n-element set X. They are called cross t-intersecting if IF n GI 2 t holds for all F E 9 and G E 3. If 9 = CfI then 9 is called t-intersecting. Let m(n, t) denote the maximum possible cardinality of a r-intersecting family. Our main result says ...

متن کامل

THE EIGENVALUE METHOD FOR CROSS t-INTERSECTING FAMILIES

We show that the Erdős–Ko–Rado inequality for t-intersecting families of subsets can be easily extended to an inequality for cross t-intersecting families by using the eigenvalue method. The same applies to the case of t-intersecting families of subspaces. The eigenvalue method is one of the proof techniques to get Erdős–Ko–Rado type inequalities for t-intersecting families, for example, a proo...

متن کامل

EKR type inequalities for 4-wise intersecting families

Let 1 ≤ t ≤ 7 be an integer and let F be a k-uniform hypergraph on n vertices. Suppose that |A∩B∩C∩D| ≥ t holds for all A,B,C,D ∈ F . Then we have |F | ≤ (n−t k−t ) if | k n − 2 |< ε holds for some ε > 0 and all n > n0(ε). We apply this result to get EKR type inequalities for “intersecting and union families” and “intersecting Sperner families.”

متن کامل

Uniformly cross intersecting families

Let A and B denote two families of subsets of an n-element set. The pair (A,B) is said to be `-cross-intersecting iff |A∩B| = ` for all A ∈ A and B ∈ B. Denote by P`(n) the maximum value of |A||B| over all such pairs. The best known upper bound on P`(n) is Θ(2), by Frankl and Rödl. For a lower bound, Ahlswede, Cai and Zhang showed, for all n ≥ 2`, a simple construction of an `-cross-intersectin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 61  شماره 

صفحات  -

تاریخ انتشار 1992